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Abstract
The quantum-electrodynamic Helmholtz free energy of binding �B is
determined to order (nα)2 for macroscopic spheres of radius a and dielectric
function ε(ω) = 1 +nα(1 −ω2/�2)−1, after renormalization by subtraction of
components proportional to volume and to surface area. The method generalizes
previous results for T = 0 to realistic temperatures kT � h̄�, expressing �B

in terms of moments of the standard properly retarded interatomic potential
W(ρ,�; T ) at separations ρ. Divergences are avoided by allowing for a
minimum value λ of ρ, comparable to the radius of the hard core of W ,
so that λ�/c � 1. The shift �B is dominated by negative components of
order −(nα)2h̄� log(c/�λ), independent of both a and T , such components
being generic to the free energy of a single body as opposed to the interaction
between bodies that are mutually disjoint. When kT a/h̄c � 1, the temperature-
dependent part of�B/(nα)2 is of order−kT log(kT a/h̄c); when kT a/h̄c � 1,
it is of order −(h̄c/a)(kT a/h̄c)3.

PACS numbers: 12.20.-m, 02.30.-f, 03.65.-w, 03.70.+k, 11.10.-m

1. Introduction

Consider the Helmholtz free energy of binding, call it B, of a single macroscopic body, more
specifically of an optically dilute atomic solid, with n atoms per unit volume, each atom treated
as a simple-harmonic oscillator having dynamical polarizability

α(ω) = α�2/
(
�2 − (ω + i0)2

)
, (1.1)

with� envisaged as a typical atomic excitation frequency. The solid is modelled as a continuum
with dielectric function

ε(ω) � 1 + 4πnα(ω), nα � 1, (1.2)
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and we shall work only to order (nα)2. We describe as nondispersive the limit � → ∞, where
α(ω) → α and ε(ω) → 1 + 4πnα become constants independent of the frequency.

For a body with total volume V and surface area S it proves convenient to write B as

B = V u + Sσ + �B, (1.3)

where u is the free energy of binding per unit volume in unbounded material, σ the surface
tension, i.e. the free energy per unit surface area of a halfspace, while we call �B the
renormalized Casimir free energy. Here we aim to extend to finite temperatures some earlier
conclusions aboutB and�B atT = 0, especially for a single body as opposed to the interaction
between bodies that are mutually disjoint (Barton 1999 and 2001a, cited as I and II; we shall
refer also to two papers on the nondispersive limit at T > 0: Barton 2001b, c, cited as III and
IV).

ForT = 0, it is shown in II thatB calculated perturbatively from quantum electrodynamics
to order (nα)2 is identically the same as the result calculated from appropriate moments JN

of the properly retarded atom–atom interactions W(ρ) at separation ρ, defined so that the
interatomic force reads −∇W . We write these as1

W(ρ) = −α2f (ρ), JN(ρ) ≡
∫ ∞

ρ

dρ ′ f (ρ ′)ρ ′N. (1.4)

In particular, one finds

u = −(nα)22πJ2(λ), σ = (nα)2 π

2
J3(λ); (1.5)

and, for a solid sphere of radius a,

B = − 1
2 (nα)

2
∫
r<a

∫
r ′<a

d3r d3r ′ f (ρ) subject to ρ > λ, (1.6)

�B

(nα)2 π2
= −1

6
�J5 +

8a3

3
J2(2a) − 2a2J3(2a). (1.7)

Here

�J5 ≡
∫ 2a

λ

dρ fρ5, (1.8)

λ being a minimum separation2, comparable to the hard-core radius of the true interatomic
potential, and the only echo in our model of the fact that real solids are atomically granular
rather than truly continuous. Notice in (1.7), (1.8) that J2,3(2a) depend on the potential only
at separations not realized inside the sphere, while �J5 depends only on separations that are
realized. Such are the subtleties of renormalization.

The crucial point is that (1.4)–(1.8) apply equally at nonzero temperature, because, in
the underlying proof of equivalence3 with QED, standard thermodynamic perturbation theory
prescribes precisely the switch of B from energy shift at T = 0 to free-energy shift at T > 0,
given by expectation values formed with the zero-order (unperturbed) canonical distribution

1 We use natural units h̄ = 1 = c (apart from occasional highlighting), and unrationalized Gaussian units for the
Maxwell field (as in III and IV, whereas rationalized units were used in I and II).
2 It is a truism of condensed-state physics that the interiors of perfectly hard cores do not contribute to the binding.
3 Appendix E of II writes down the QED Hamiltonian that matches (1.1), (1.2), and proves the equivalence at T = 0.
For nondispersive materials the proof at T = 0 is given in I, and extended to T > 0 in IV. Alternatively, if one
considers B as an object of interest in its own right rather than as a challenge to field theory, then one could reason
that such proofs are redundant once the intermolecular forces have been identified in the form −∇W : for then it is
self-evident that equation (1.6) represents the free energy of binding, and the other equations ensue automatically.
The direct connections between B and the forces are explicated by Boyer (1975 and 1973).
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(see e.g. Landau and Lifshitz 1958, Peierls 1979). Of course one must then use the appropriate
T -dependent potential:

f = f (ρ,�; T ) ⇒ �B = �B(a,�; T ); (1.9)

however, when it is possible without confusion, we may suppress some or all of the arguments,
lapsing e.g. to f (ρ,�; T ) = f (ρ; T ) = f (ρ). Because B is a Helmholtz free energy, the
corresponding entropy S and total energy E are given by

S = −∂B/∂T , E = B + T S, (1.10)

and similarly for �S and �E.
The present paper determines �B(a,�; T ) for a macroscopic sphere4 under the evident

restriction

λ � 1/� � a, (1.11)

and at realistic temperatures such that

kT � �; (1.12)

otherwise any real atoms would be almost wholly ionized, and any initially condensed body
would have evaporated long since. Part of the challenge is to reduce to some sort of order the
complications from having two dimensionless parameter free of the cutoff, say kT a/h̄c and
a�/c, instead of just a�/c as at T = 0.

It proves convenient to define

A ≡ 4πkT a/h̄c, " ≡ 4πkT λ/h̄c, "/A = λ/a � 1. (1.13)

Moreover, whether A is large or small, we always have

" � 1; (1.14)

physically, this follows from h̄� � h̄c/λ combined with kT � h̄�. (Formally, (1.14) merely
reflects the approach to λ = 0, which is understood throughout.) We also need to define
some terminology: in free energies, terms that would diverge in the limit λ → 0 are called
(nominally) divergent, with the qualification usually omitted; terms that remain finite are called
convergent; and terms that vanish with λ (or equivalently with") will always be dropped. Pure
Casimir terms are defined as those convergent terms that depend only on nα, the radius a, and
kT (but neither on λ nor on �).

We shall derive analytic approximations for the two extreme regimes compatible with
(1.11) and (1.12), namely the regimes where

either λ � 1/� � a � 1/kT ⇒ A � 1 : (low T ), (1.15)

or λ � 1/� � 1/kT � a ⇒ A � 1 : (high T ). (1.16)

From such approximations we shall systematically drop all contributions to �B that are
exponentially small in the sense of being at most of order exp(−h̄�/kT ) or, when A is
large, of order exp(−A). This simplifies the displays enormously: intermediate values of
A would require extensive numerical calculations. For orientation, equations (1.11)–(1.16)
might be viewed in the light of the parameters for solid argon (cf II, appendix F); there,
expressed in atomic units, one finds the lengths λ � 4.4 and c/� � 3.1 × 102, while
1/kT � 1.4 × 105 × (300/T ) and (a/mm) � 1.9 × 107.

4 There is interesting physics also in the temperature-dependence ofu and of σ , but renormalization makes it irrelevant
to �B.
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The calculations for T = 0 are reported in II. Subject to (1.11), equations (1.7), (1.8) then
yield

�B(T = 0)

(nα)2π2
= −1

6
�J5(T = 0) − 23

4πa
· 1

24
, (1.17)

where

�J5(T = 0) = J5(λ; 0) − J5(2a; 0) = J5(λ; 0) − 23

4πa
· 1

2
, (1.18)

so that

�B(T = 0)

(nα)2π2
= −1

6
J5(λ; 0) +

23

96πa
. (1.19)

The divergent component reads

J5(λ; 0) = �

{
3

4

[
log

(
1

2�λ

)
− γ

]
+

65

32
+ O

(
�λ log

(
1

�λ

))}
. (1.20)

Remarkably, subject to (1.11) this is independent of a; which proves important, because we
shall find that −J5(λ; 0)/6 persists unmodified as the only nominally divergent and easily the
dominant component5 of �B at any temperature subject to (1.12). By contrast, the component
23/96πa on the right of (1.19), first derived from QED in I, is a pure Casimir term, and smaller
by some orders of magnitude.

Finally, it may be worth anticipating some surprise at just how extensively this study,
concentrated on dispersive bodies, can, a posteriori, exploit relations derived directly in the
far simpler nondispersive limit. For brevity, we shall draw on such results as much as is
possible without making the present paper (V) unreadable on its own. Hence we schematize
its relation to its antecedents:

nondispersive dispersive
T = 0 I II

T > 0

{
potentials : III
�B : IV

}
V.

The rest of this paper is laid out as follows. Section 2 specifies the potential f (ρ,�; T );
derives the most useful approximations to it, namely (2.8), (2.9) at temperatures low in a sense
that needs careful definition; the nondispersive limit fnd , equation (2.12), which turns out to be
appropriate only in the retarded regime; and the asymptotics of fnd , namely (2.13) for A � 1,
and (2.15) for A � 1. (Though at first sight these preliminaries may appear excessive, they
prove labour-saving before long.) Section 3 derives our most dramatic conclusions, those for
A � 1, with the remarkable logarithmic end-result for �B given by (3.11), (3.12). Section 4
deals with the relatively small T -dependent corrections to �B for A � 1, given by (4.6) as an
incipient series in powers of A. Section 5 contains some brief final comments. The appendix is
mainly technical: it exploits the Abel–Plana formula to accelerate the convergence of certain
Matsubara series encountered in sections 2 and 3. (Section A.2 is a digression to defuse
awkwardness from double poles on an integration contour, which are endemic in potentials
between identical atoms, though they happen not to impede the present paper.)

5 That �B contains divergent terms has or should have been known ever since the work of Candelas (1982); I and II
discuss them in some detail. Inspection will reveal that they dominate �B not so much because they would diverge
(logarithmically) as λ → 0, but because they are prefaced by �. This feature is one of the most characteristic
consequences of dispersion (cf II): nondispersively the divergent parts of �B would have a factor 1/λ instead of �,
which would make their dominance even more pronounced (cf IV).
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2. The potential f (ρ, Ω; T )

Probably the most accessible of convincing derivations is that given by McLachlan (1963a, b).
We adopt the dipole approximation, and quote the particularly convenient (some might say
least inconvenient) form of f as a Matsubara sum, given by Goedecke and Wood (1999; GW
in the following). Temporarily restoring h̄ and c, their equations (13), (14) expressed in our
notation read6

f = 2kT

ρ6
Qh(x, y), x ≡ 4πkTρ/h̄c,

y ≡ 2πkT

h̄�
, w = x/y = 2�ρ/c,

(2.1)

h(x, y) ≡
′∑ exp(−nx)

(1 + n2y2)2
,

′∑
. . . ≡

∞∑
n=0

(1 − 1
2δn,0) . . . ; (2.2)

Q is the zero-degree homogeneous differential operator

Q ≡ 3 − 3x∂ + 5
4x

2∂2 − 1
4x

3∂3 + 1
16x

4∂4, ∂ ≡ ∂

∂x
, (2.3)

with

Q · 1

x
= 23

2x
, Q · 1 = 3, Q · x = 0 = Q · x3, Q · x5 = 11

2
x5. (2.4)

We identify the regimes

nonretarded : w � 1; retarded : w � 1. (2.5)

Several approximate forms of f are prominent in applications.

(i) At exactly zero temperature, f reduces to f0, given by replacing
∑′ → ∫ ∞

0 dn.
Rescaling the integration variable one finds

f (ρ;�; T = 0) ≡ f0 = �

πρ6
Q

∫ ∞

0
du

exp(−uw)

(1 + u2)2
; (2.6)

f0(w � 1) � fV dW ≡ 3�

4ρ6
, f0(w � 1) � fCP ≡ 23

4πρ7
. (2.7)

The functions fV dW and fCP are just the leading terms of asymptotic expansions detailed in
II, which also expresses f0 in terms of sine and cosine integrals7, and calculates its moments.

(ii) Appendix A.1 derives a decomposition

f = f0 + f1, (2.8)

which is generally valid, but is designed for temperatures low in the sense that both x and y

are small, when f1 is just a small correction to f0. Under those conditions8

f1 � (kT )6

ρ
(2π)5

{
11

945
+

(−23x2 + 308y2
)

12 600
+ O [

x4, x2y2, y4
]}

,

(x, y � 1, w arbitrary). (2.9)

6 The function h should not be confused with Planck’s constant. GW’s f (x, y) and Dx are our h(x, y) and Q.
7 It is left as an entertainment for the reader to verify that (2.6) here is equivalent to the prima facie somewhat different
equations (2.1)–(2.3) in II.
8 For the extreme nonretarded limit c → ∞, Boyer (1975) and Milonni and Smith (1996; equation (29)) give
f1 � f0 × 2 exp(−h̄�/kT ); in other words this limit admits no corrections small only proportionately to powers of
kT /h̄�. Ninham and Daicic (1998; equation (22)) propose a leading term proportional like ours to (kT /h̄c)6/ρ, but
with a coefficient different in magnitude and sign. However, their expansion of f0 in the same equation is wrong, for
reasons not identifiable from the context or through the authors, and it seems possible that related errors have infected
their f1 as well. The expansion of f0 for ρ�/c � 1 is given e.g. in II, equation (2.4).
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(iii) The nondispersive (nd) limit entails y = 0; it yields

hnd ≡ h(x, y = 0) =
′∑

exp(−nx) = 1

2
coth

(x

2

)
, (2.10)

and

f (ρ,� = ∞; T ) ≡ fnd(ρ; T ) = 2kT

ρ6
Qhnd, (2.11)

or in other words9

fnd = kT

ρ6
Q coth(2πkTρ), (2.12)

as derived in III with � → ∞ implemented at the outset. The standard expansions of coth(z)
yield the asymptotics:

fnd(2πkTρ � 1) = 23

4πρ7
+

11(2π)5

945
· (kT )6

ρ
+ O [

ρ (kT )8
]
, (2.13)

fnd(2πkTρ � 1) = kT

ρ6

{
3 + O [

(kTρ)4 exp(−4πkTρ)
]}

. (2.14)

Evidently the nd limit entails w � 1, so that fnd applies in (and only in) the retarded regime.
Its low-T version (2.13) will prove useful in section 4. Conversely, in its high-T version (2.14)
one can, to exponential accuracy, set

fnd(2πkTρ � 1) � fpV dW ≡ 3kT

ρ6
. (2.15)

We call fpV dW the pseudo-Van-der-Waals potential. (One might be tempted to call it the
‘classical limit’ since it is free of h̄, but this could mislead, because the underlying condition
y = kT /h̄� → 0 fails if the limit h̄ → 0 is taken before � → ∞.)

For y small but not strictly zero, and arbitrary x, the potential is determined in appendix
A.1. When x is small too, h and f are already known from (2.8) and (2.9). When x is large,
one has f � fpV dW , which is merely a special case of the general result stated next.

(iv) Equations (2.1)–(2.4) show that to leading order

f → fpV dW as x → ∞, or y → ∞, or both, (2.16)

because either limit suffices to reduce h(x, y) to its first term (with n = 0), entailing h → 1/2
and Qh → 3/2. Indeed much of the fascination of finite-temperature Casimir problems stems
precisely from the fact that for any fixed T , however small, large enough ρ inevitably entails
f � fpV dW , which may be weak in absolute terms, but has become dominant rather than a
relatively small correction.

The remarkable numerical work of GW illustrates very clearly how, as ρ rises, f (ρ,�; T )

modulates from fV dW to fCP and then from fCP to fpV dW , provided kT /� � 10−3; and how
the intermediate plateau with f � fCP disappears if this ratio though small is not small enough.
If such a plateau does exist, then, to a first approximation, the inner transition (fV dW to fCP )
is described by f (ρ,�; 0), and the outer transition (fCP to fpV dW ) by f (ρ,∞; T ) = fnd .

We are now in a position to tackle the moments needed in (1.7), namely J2,3(2a; T )

and �J5(T ). Notice from (2.15), (2.16) that, unless T is exactly zero, one cannot write
�J5(T ) = J5(λ; T ) − J5(2a; T ), because the separate integrals would then diverge at their
upper limit.

9 In III and IV the symbol f is used for what here we denote as fnd .
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It may be worth stressing that (2.1), (2.2) apply to systems in overall thermal equilibrium;
so therefore do the resultant B and �B. In particular, the atoms are assumed to be Boltzmann-
distributed over their energy eigenstates; hence strictly speaking the polarizability α(ω) is a
canonical average, and therefore a function of the temperature, introducing a T -dependence
additional to that which we study explicitly. As far as the writer knows, this point of principle
was last stressed by McLachlan (1963b). Fortunately we can disregard it, for two quite different
reasons. First, in virtue of the restriction (1.12), Boltzmann factors exp(−�/kT ) ensure that
the proportion of excited to ground-state atoms is negligible. Second, for the simple-harmonic
oscillators that we consider, the polarizability happens to be the same in all states, so that (1.1)
applies with exactly the same α at any temperature.

Finally, for completeness and without enthusiasm, we quote the potential in a form that is
sometimes regarded as more basic than (2.1)–(2.4 ), and is obtainable from them by rotating an
integration contour back from the imaginary to the real axis in the complex frequency plane:
namely

f (ρ) = −2kT

ρ6
QIm

∫ ∞

0
du coth(πu)

exp(−iux)[
1 − y2u2 − i0

]2 . (2.17)

Some of the disadvantages attending this version, on account partly of the double pole in its
integrand, may become more apparent from the appendix, and especially from section A.2.

3. The renormalized free energy ∆B(a, Ω; T ) at high temperatures: 1/kT � 2a

We must evaluate (1.7) for A � 1. For ρ > 2a, equation (2.16) then entails f � fpV dW ,
whence the moments JN (2a) are given by

JN � JN(ρ; T )pV dW =
(

3kT

5 − N

)
1

ρ5−N
. (3.1)

Hence {
8a3

3
J2(2a; T ) − 2a2J3(2a; T )

}
pV dW

= −5kT

12
, (3.2)

as known already from IV. This contribution, which at T = 0 is proportional to h̄c/a, has
become proportional to kT instead, and independent of a, because for ρ > 2a the potential f
has become proportional to kT /ρ6 instead of h̄c/ρ7.

More effort is needed to determine �J5, because it is sensitive to the potential for all ρ
from λ to 2a. We change the integration variable from ρ to x; notice from (1.13) and (1.16)
that in this regime " � 1 � A; separate the contributions to h(x, y) from the terms with
n = 0 and with n � 1; and start from

�J5 = �J5(n = 0) + �J5(n � 1), (3.3)

�J5(n = 0) = 3kT
∫ 2A

"

dx

x
= 3kT log

(
2a

λ

)
, (3.4)

�J5(n � 1) = 2kT
∞∑
n=1

1

(1 + n2y2)2

×
∫ 2A

"

dx

x

[
3 + 3nx +

5

4
n2x2 +

1

4
n3x3 +

1

16
n4x4

]
exp(−nx). (3.5)
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In (3.5), the upper limit may be replaced by ∞, since the differences are at most of order
exp(−2A), ie exponentially smaller than the powers that we shall encounter presently.
Moreover, we may integrate all but the first term within the square brackets down to x = 0,
since the difference vanishes with ", and obtain∫ ∞

0

dx

x

[
3nx +

5

4
n2x2 +

1

4
n3x3 +

1

16
n4x4

]
exp(−nx) = 41

8
.

By contrast, the first term inside the square brackets in (3.5) features the exponential integral∫ ∞

"

dx

x
exp(−nx) = E1(n") � log

(
1

n"

)
− γ,

where γ � 0.577 is Euler’s constant. These approximations yield

�J5(n � 1) � 2kT

{
3 log

(
1

"

)
− 3γ +

41

8

} ∞∑
n=1

1

(1 + n2y2)2
− 6kT

∞∑
n=1

log(n)

(1 + n2y2)2
.

(3.6)

The first sum is elementary, and easily approximated for small y:

∞∑
n=1

1

(1 + n2y2)2
= π

4y
coth

(
π

y

)
+

π2

4y2
· 1

sinh2(π/y)
− 1

2
= π

4y
− 1

2
+ O

(
exp(−2π/y)

y

)
.

(3.7)

The second sum in (3.6) is more demanding, and is relegated to appendix A.3; the result reads

/ ≡
∞∑
n=1

log(n)

(1 + n2y2)2
� π

4y
log

(
1

y

)
− π

4y
+

1

2
log(2π), (3.8)

up to terms that vanish with y. From (3.6)–(3.8) one finds

�J5(n � 1) = 3

4
�

[
log

(
1

2�λ

)
− γ

]
+

65

32
� − 3kT

[
log

(
1

2kT λ

)
− γ

]
− 41

8
kT .

(3.9)

Finally, substitution into (3.3) from (3.4) and (3.9) yields10

�J5(T ) = J5(λ; T = 0) + 3kT
[
log (4kT a) + γ

] − 41
8 kT , (3.10)

which we have chosen to express using the combination J5(λ; T = 0) already quoted in (1.20).
From (1.7), (3.2), and (3.10) one can now assemble our end-result for the sphere at high

T : re-instating h̄ and c one finds

�B(a,�; T )

(nα)2π2
� −1

6
J5(λ; T = 0) − 1

2
kT

[
log

(
4kT a

h̄c

)
+ γ

]
+

7

16
kT (3.11)

= �B(a,�; 0)

(nα)2π2
− 23

96πa
− 1

2
kT

[
log

(
4kT a

h̄c

)
+ γ

]
+

7

16
kT . (3.12)

It hardly needs stressing that the way this varies with a is utterly different from the variation
at zero temperature as described by (1.19 ). Some more detailed comments are also in order.

10 Though prima facie surprising, the sign of γ in the combination
[
log (4kT a) + γ

]
is not a misprint: it arises from

the merger of the familiar combination [log(1/2kT λ) − γ ] from (3.9) with the log(2a/λ) from (3.4).
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(i) The dispersion parameter � enters only through the first term on the right-hand side
of (3.11); this term is independent of T as well as of a, but dominates the others by a factor of
order �/kT , which is large by assumption. Traditionally this term is disregarded altogether,
perhaps in the belief that, being nominally divergent (on account of its factor log(1/2�λ)), it
ought to be absorbed by some renormalization. Central to the message of II was the argument
that this belief is mistaken, in the sense that it is inappropriate to the physics that determines
measured binding energies.

(ii) The logarithm, i.e. the dependence on the radius, stems wholly from �J5.
(iii) As we have stressed, �B is a free-energy shift. From (1.10), the corresponding shifts

�S in entropy and �E in total energy are given by

�S/k

(nα)2 π2
= 1

2

[
log

(
4kT a

h̄c

)
+ γ

]
+

1

16
,

�E

(nα)2 π2
= −1

6
J5(λ; T = 0) +

1

2
kT .

(3.13)

4. The renormalized free energy ∆B(a, Ω; T ) at low temperatures: 1/kT � 2a

We must evaluate (1.7) for A � 1 and y � 1. From section 2 paragraph (iii) we see that
y � 1 admits f � fnd ; but now, instead of calculating the J2,3(2a) with the asymptotic
form fpV dW of fnd (as in section 3), we must use in its exact form (2.12), which makes the
integrations quite awkward. They are reported in IV, whence we merely quote the results:

J2(2a) = 1

πa4

{
23

256
+

7A4

11 520
− 11A6

60 480
+ O(A8)

}
, (4.1)

J3(2a) = 1

πa3

{
23

96
+
ζ(3)A3

32π2
− 11A6

45 360
+ O(A8)

}
. (4.2)

The calculation of �J5 runs quite differently, because it is sensitive to values of ρ all the
way down to λ. The trick is to split f = f0 +f1 as for low T in (2.8), (2.9), and correspondingly
split11

�J5 = �J5(T = 0) + �J51 (4.3)

into a zero-temperature part from (1.18) plus the T -dependent correction

�J51 =
∫ 2a

λ

dρ ρ5f1 � 11(2π)5

945
(kT )6

∫ 2a

0
dρ ρ4 = 11

18 900πa
A6. (4.4)

Once again we have set λ → 0, because the difference vanishes with λ.
We can now substitute into (1.7) from (4.1)–(4.4), and find, with �B(T = 0) from (1.17),

�B = �B(T = 0) + �B1, (4.5)
�B1

(nα)2π2
� 1

a

{
−A3 ζ(3)

16π3
+ A4 7

4320π
− A6 11

113 400π
+ O(

A8
)}

. (4.6)

The first term on the right stems from J3, the second from J2, and the third jointly from J2,
J3, and �J51.

11 Do not confuse �J5(T = 0) and �J51 with �J5(n = 0) and �J5(n � 1) in (3.3)–(3.5).



5790 G Barton

5. Comments

(i) We have extended to nonzero temperatures the perturbative methods for the Casimir energy
of a single, macroscopic, and dispersive dielectric body, as developed in II and as applied
there to several shapes, but only at T = 0. From another point of view, we have extended
the finite-temperature theory in IV from nondispersive to dispersive materials. The restriction
to insulators is essential: for instance, our method is quite unwarranted for a plasma with
dielectric function ε = 1 − �2/ω2, which cannot be treated as a set of localized oscillators,
no matter how tenuous it might be.

(ii) The main surprise for the writer is just how narrowly the conditions kT � h̄� and
a�/c � 1 restrict the appearances of the dispersion parameter � in the end-results (3.11)
and (4.5), (4.6) for the shift �B. Much of this simplicity ensues from dropping all
contributions that section 1 has called exponentially small. When kT a/h̄c is very large,
and again when it is very small, �B splits naturally into two terms. In each case the
second term is a small correction, independent of � and λ, and it catches the eye. But
the first term is larger by several orders of magnitude: it is nominally divergent, a function
of � and of λ but not of a, and already familiar from II. In (4.5) it is just �B(T =
0), while in (3.11), (3.12) it differs from �B(T = 0) merely by the convergent term
−(nα)223π/96a.

(iii) For effects that depend jointly on � and on low T , one would have to look to
contributions from the second term in the correction (2.9) to the potential.

(iv) As already stressed in section 3 comment (i), and in comment (ii) just above, �B is
dominated by its nominally divergent zero-temperature component. This is negative, and in
that sense attractive; and so consequently is �B itself, at any temperature. As discussed in II,
it is far from clear what if anything our expressions for �B might imply about local stresses in
the sphere; nevertheless it may be worth pointing out that the sign of ∂�B/∂a never changes
either. At low T , equations (4.5), (4.6) show that the dominant term to depend on a comes
from �B(T = 0), whence ∂�B/∂a � −π2(nα)223/96πa2, a conclusion unaffected by the
possibly more glamorous T -dependent correction �B1; while at high T , equation (3.11) yields
∂�B/∂a � −kT /2a.

(v) Revert now to point (ii). Though essential to the physics, dispersion enters the end-
results in ways so restricted that one is strongly motivated to explore the nondispersive model
in its own right, taking α as independent of frequency from the start. The temptation is the
greater because with the potential fnd , unrealistic though it might be, all calculations can at
least be done in closed form; moreover, fnd itself can then be derived from QED with relative
ease, and without Matsubara expansions. Finally, to whatever extent one might be justified
in ignoring dispersion, it becomes possible to deal in much the same way with magnetic as
we have here dealt with electric polarizability. (In particular, one can then deal with materials
having εµ = 1, which are of some interest to theorists.) The resulting T -dependent potentials
are reported in III, and the consequent shifts �B in IV.

(vi) The writer knows of no other attempts to derive the finite-T results reported here for
dispersive media. (Høye et al (2000) tackle the problem of two concentric spheres separated
by a narrow gap; but they switch from weak to perfect reflectors before deriving anything
explicit.) The nearest possibility is to compare the nondispersive results (from IV) with
the output of mode-summation methods reported by Nesterenko et al (2001) and by Klich
et al (2000), for media having µ = 1 and µ = 1/ε respectively. These comparisons
are spelled out in IV, together with the reasons why it remains unclear, for the present,
whether one should expect exact coincidence, and what physics would be implied by any
discrepancies.
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Appendix. Applications of the Abel–Plana formula

We quote the formula restricted to summands F(n) free of singularities for Re n > m, where
it reads
∞∑

n=m

(1 − 1
2δnm)F (n) −

∫ ∞

m

dnF(n)

= i
∫ ∞

0

du[
exp(2πu) − 1

] [F(m + iu + ε) − F(m − iu + ε)] . (A.1)

The infinitesimal positive addends in ±iu + ε = ±i(u ∓ iε) stem from the contour rotations
that led to the formula in the first place. They prescribe how to avoid any poles on the vertical
n = m ± iu through m in the complex n plane.

The formula is perhaps more often exploited in problems where the sum and the integral on
the left diverge, and is discussed in that connection elsewhere (Barton 1981, 1982). A fortiori
it holds when both converge, continuing in our case to serve its primary purpose by effectively
accelerating the convergence of the series for h, as will appear presently. For the basic
mathematics see Hardy (1949).

A.1. The potential f at low temperature

For use in (2.2) the formula (with m = 0) gives the exact relations12

h = h0 + h1, h0 ≡
∫ ∞

0
dn

exp(−nx)

(1 + y2n2)2
= 1

y

∫ ∞

0
du

exp(−wu)

(1 + u2)2
, (A.2)

h1 = i
∫ ∞

0

du[
exp(2πu) − 1

]
{

exp(−iux)[
1 − y2u2 + iε

]2 − exp(iux)[
1 − y2u2 − iε

]2

}
. (A.3)

The term h0 is responsible for the familiar zero-temperature f0 in the decomposition (2.8).
This calculation is standard, and we do not discuss it further, being concerned only with the
correction term h1, which is responsible for f1.

At first sight, the double poles infinitesimally close to the integration path threaten trouble,
but the next section shows (a) how to make them amenable to calculation in case of need (though
here there will be no need); and (b) that for y � 1, (as here), their vicinity contributes only
terms with factors exp(−2π/y), i.e. of an order that we are disregarding in any case. To
this accuracy the factors

[
1 − y2u2 ± iε

]−2
become effectively identical; we expand them in

powers of y2u2; purely for book-keeping purposes replace u2n inside by (−d2/dx2)n outside
the integral; and re-sum to obtain the symbolic but very useful expression

h1 � 2[
1 + y2d2/dx2

]2

∫ ∞

0

du sin(ux)[
exp(2πu) − 1

] = 1[
1 + y2d2/dx2

]2

{
1

2
coth

(x

2

)
− 1

x

}
.

(A.4)

Expanding {. . .} for large x one has

h1 � 1[
1 + y2d2/dx2

]2

{
1

2
− 1

x
+ O(e−x)

}
;

12 In this appendix the subscript 0 identifies T = 0; it should not be confused with the term having n = 0 in the
Matsubara sum (2.2).
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with the prefactor re-expanded this eventually reproduces the expected result f1 � fpV dW −
fCP , entailing f � fpV dW .

Here however we are concerned with small x. Then we can expand either {. . .} on the
right of (A.4), or equivalently sin(ux) already under

∫
du . . . . Expanding simultaneously in

powers of y2 as well, and acting with Q, one obtains

Qh1 = 11x5

26 · 945
+

x5

29 · 1575

[−23x2 + 308y2
]

+ · · · , (A.5)

where the terms proportional to x and to x3 have cancelled in virtue of (2.4). Equations (2.1)–
(2.4) then yield the expansion quoted in (2.9). It bears repeating that we have assumed T to
be low only in the sense that both x and y are small, while x/y remains arbitrary; hence (2.9)
applies equally in the retarded and in the nonretarded regimes.

A.2. Exorcising the double poles

It may not be immediately obvious how, in practice, to carry the integrations in (A.3) past the
double poles infinitesimally close to u = 1/y. To put the integrals into manageable form we
write

η ≡ 1/y, h1 = −η4 ∂H1

∂η2
, (A.6)

H1 = 2 Re i
∫ ∞

0

du[
exp(2πu) − 1

] · exp(−iux)[
η2 − u2 + iε

]
= 2 Re i

∫ ∞

0

du exp(−iux)[
exp(2πu) − 1

]
{

P[
η2 − u2 + iε

] − iπδ
[
u2 − η2

]}
,

H1 = y
cos(x/y)[

exp(2π/y) − 1
] + 2P

∫ ∞

0

du[
exp(2πu) − 1

] · sin(ux)[
η2 − u2

] . (A.7)

This solves the problem: we drop the first term because it is exponentially small, and the
principal-value integral is a differentiable function of x and y. In particular, for large η

(small y) it may be expanded in powers of y2, just as in section A.1

A.3. The sum /

We apply (A.1) (with m = 1) to the sum in (3.8), which is required up to terms that vanish
with y. Thus,

/ ≡
∞∑
1

log(n)

(1 + n2y2)2
= /0+/1, (A.8)

where

/0 =
∫ ∞

1

dn log(n)

(1 + n2y2)2
= π

4y
log

(
1

y

)
− π

4y
+ 1 + · · · , (A.9)

while

/1 = i
∫ ∞

0

du[
exp(2πu) − 1

]
{

log(1 + iu)[
1 + y2(1 + iu)2

]2 − log(1 − iu)[
1 + y2(1 − iu)2

]2

}
. (A.10)

Except that we have already approximated /0, equations (A.8)–(A.10) are exact. The crucial
point is that, for small y, the denominators within the braces in (A.10) supply corrections
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which are at most of relative order y2; hence we can replace these denominators by unity, and
write

/1 � i
∫ ∞

0

du[
exp(2πu) − 1

]2i tan−1(u) = −1 +
1

2
log(2π). (A.11)

Equation (3.8) follows on substituting from (A.9) and (A.11) into (A.8).
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